In this post, you will learn how to write a python program for the subtraction of two Matrices by taking input from the user with an example and algorithm.

## Rule for Subtraction of two matrix

You can subtract two matrices if the number of rows and number of columns is the same for both the matrix.

**Example:**

## Algorithm for Subtraction of two matrices

1. | Ask the user for the input of rows (m) & columns (n) of the matrix. |

2. | Using function and list comprehension create `input()` and `matrix_A` of dimension `matrix_B` `m x n` . |

3. | For storing the result, create another matrix ( ) of the same dimension and initially, it is `m x n` Zero. |

4. | Using nested for-loop do .`result[i][j] = matrix_A[i][j] - matrix_B[i][j]` |

5. | At last print the resultant matrix.`(result)` |

Programming concepts you have to know for writing this program:

## Source code

```
# matrix subtraction in python
rows = int(input('ENter number of rows: '))
cols = int(input('ENter number of column: '))
print() # for new line
print('Enter values for matrix A')
matrix_A = [[int(input(f"column {j+1} -> ENter {i+1} element:")) for j in range(cols)] for i in range(rows) ]
print() # for new line
print('Enter values for matrix B ')
matrix_B = [[int(input(f"column {j+1} -> ENter {i+1} element:")) for j in range(cols)] for i in range(rows) ]
print() #for new line
print('Matrix-A :')
for i in matrix_A:
print(i)
print() #for new line
print('Matrix-B :')
for i in matrix_B:
print(i)
# resultant matrix (matrix that store answer and intially it is Zero)
result = [[0 for j in range(cols)] for i in range(rows)]
# subtraction
for i in range(rows):
for j in range(cols):
result[i][j] = matrix_A[i][j] - matrix_B[i][j]
print() #for new line
print('Subtraction of Matrix-A and Matrix-B is :')
for i in result:
print(i)
```

### Output

```
ENter number of rows: 2
ENter number of column: 2
Enter values for matrix A
column 1 -> ENter 1 element:6
column 2 -> ENter 1 element:2
column 1 -> ENter 2 element:7
column 2 -> ENter 2 element:9
Enter values for matrix B
column 1 -> ENter 1 element:1
column 2 -> ENter 1 element:2
column 1 -> ENter 2 element:3
column 2 -> ENter 2 element:4
Matrix-A :
[6, 2]
[7, 9]
Matrix-B :
[1, 2]
[3, 4]
Subtraction of Matrix-A and Matrix-B is :
[5, 0]
[4, 5]
```